
PHYSICAL REVIEW E 68, 026217 ~2003!
Rapid convergence of time-averaged frequency in phase synchronized systems
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Numerical and experimental evidences are presented to show that many phase synchronized systems of
nonidentical chaotic oscillators, where the chaotic state is reached through a period-doubling cascade, show
rapid convergence of the time-averaged frequency. The speed of convergence toward the natural frequency
scales as the inverse of the measurement period. The results also suggest an explanation for why such chaotic
oscillators can be phase synchronized.
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I. INTRODUCTION

The rich collective behavior, including mutual entrai
ment and self-synchronization, in systems of coupled os
lators has been considered by several investigators in the
few years ~see, for example, Refs.@1–3#, and references
therein!. Recently, a considerable amount of research
been devoted to the study of coupledchaoticoscillators and,
in particular, to the phenomenon of phase synchronizat
Provided that the phase can be defined@4,5#, two coupled
nonidentical chaotic oscillators are said to be phase sync
nized if their frequencies are locked but amplitudes are
@1,6#. This appears to be a general phenomenon and it
been observed in systems as diverse as electrically cou
neurons @7,8#, biomedical systems@9#, chemical systems
@10#, and spatially extended ecological systems@11#. More-
over, the potential role of phase synchronization in br
functions has been explored@12,13#.

The most common theoretical approach to phase sync
nization of chaotic oscillators is based on an analogy w
the evolution of the phase of a periodic oscillator in the pr
ence of external noise@1#. This approach leads to the con
clusion that the dynamics of the phase is generally diffus
and the phase performs a random walk. However, the ef
tive ‘‘noise’’ in such a description cannot be considered a
Gaussiand-correlated noise in all circumstances. In this p
per, we show that the effective noise exhibits strong temp
correlations for a general class of chaotic attractors. In p
ticular, we present evidence from simulations and exp
ments that many phase synchronized systems of chaotic
cillators, where the chaotic state is reached through a per
doubling cascade, show a rapid convergence of the ti
averaged frequency. The speed of convergence toward
natural frequency scales as the inverse of the measure
period. This implies that short measurement times may
fice for reliable determination of frequencies in those s
tems.

The outline of the paper is as follows. Section II prese
a sketch of the theoretical background of phase dynamic
chaotic systems and the expected scaling of the ti
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averaged frequency with the observation time. The result
numerical simulations of globally coupled arrays of Ro¨ssler
oscillators are presented in Sec. III where features of
chaotic attractor leading to rapid convergence of the tim
averaged frequency are identified. Section IV contains a
scription and analysis of experimental results on a globa
coupled array of electrochemical oscillators where rapid f
quency convergence is observed.

II. THEORETICAL BACKGROUND

An appropriate definition of the phase for chaotic se
sustained oscillators can be obtained from the Poincare´ map
of the flow. Such a map can be constructed if a surface
section in the phase space of the autonomous continu
time chaotic system exists which is crossed transversally
all trajectories of the chaotic attractor. Then, for each pie
of a trajectory between two crossings of this surface,
define the phase as a linear function of time:

f~ t !52p
t2tn

tn112tn
12pn, ~1!

for tn<t,tn11. Here, tn is the time of thenth crossing of
the surface of section. The definition is ambiguous becaus
depends on the choice of the Poincare´ surface. Yet, any
choice of a phase variable for chaotic oscillators investiga
in this paper leads to the same macroscopic behavior@5#.

With this phase definition, the phase dynamics can
described by

An115M~An!, ~2!

df/dt5v~An![v01h~An!, ~3!

where the amplitudeAn is the set of coordinates of the pha
point on the Poincare´ surface at the nth intersection andM
defines the Poincare´ map that takesAn to An11. The ‘‘instan-
taneous’’ frequencyv(An)52p/Tn is determined by the
Poincare´ return timeTn5tn112tn and depends, in genera
on the amplitude. Assuming chaotic behavior of the amp
tudes, we can consider the termv(An) to be the sum of the
average~natural! frequencyv0 and some effective ‘‘noise’’
h(An) with zero mean, although this stochastic term ha
purely deterministic origin@1#. Thus, Eq.~3! has the solution
©2003 The American Physical Society17-1
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f~ t !5f01v0t1E
0

t

h~t!dt. ~4!

The variance of the integral*0
t h(t)dt is given by

K S E
0

t

h~t!dt D 2L 52E
0

t

dt8~ t2t8!K~t8!

'2tE
0

`

dt8K~t8![2tDh . ~5!

Here, K(t8)5^h(t)h(t1t8)& and the averagê•••& is
taken over the invariant measure of the chaotic attractor.
approximate equality holds provided thath(t) has a finite
correlation timetc such thatK(t8)'0 for t8.tc and one
considers timest@tc . This shows that the dynamics of th
phase is diffusive and the phase performs a random wal
long astc is finite andDhÞ0. However, as pointed out b
Pikovsky and co-workers@1#, the dynamics of the phase ge
erally differs from stochastic Brownian motion because
effective ‘‘noise’’ cannot be considered as a Gaussian w
noise process. This was recently confirmed for a system
locally coupled Ro¨ssler oscillators where temporal correl
tions were shown to exist@14#. These correlations determin
the speed of convergence of the time averagev̄(T)
5T21@f(T)2f(0)# toward v0. The speed of
convergence—as measured by the standard deviation o
ensemble distribution ofv̄(T)—scales as 1/T. This is in
contrast to what one would expect ifh was a white noise
process where one obtains 1/AT scaling sincev̄(T)2v0

51/T*0
Tdth(t) and the standard deviation of*0

Tdth(t)
scales withAT. Here, we provide further numerical and e
perimental evidence that such a scaling generally occurs
oscillators where the chaotic state is reached throug
period-doubling cascade. In particular, the type of coupl
between the chaotic oscillators seems to be irrelevant. M
over, we show that the temporal correlations induce an a
nating behavior ofK(t8). This leads to an extremely sma
value of Dh for these systems and suggests that they
generally be phase synchronized.

III. GLOBALLY COUPLED RO ¨ SSLER OSCILLATORS

We consider anL3L array ofglobally coupled, noniden-
tical chaotic Ro¨ssler oscillators:

]x~r ,t !

]t
5R„x~r ,t !…1K/L2 (

r̂PN
@x~ r̂ ,t !2x~r ,t !#, ~6!

where R152v(r )x22x3 , R25v(r )x110.2x2 , R35x1x3
25.9x310.2. The sites of the lattice are labeled byr , K is
the coupling constant, andN is the set of all sites on the
lattice. We takeL564 and choose thev(r )’s randomly from
a uniform distribution in the interval@0.99,1.01#. This en-
sures that all oscillators are chaotic. We find that the spee
convergence ofv̄(T) toward v0 in the phase synchronize
state scales as 1/T ~see Fig. 1!. This is also true for higher
v(r ) dispersion.
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The 1/T scaling observed in the globally coupled Ro¨ssler
system follows from the fact that the local chaotic attracto
although one banded in the phase synchronized state~see
Fig. 2!, have internal structure.

In the absence of coupling (K50), the local nonidentical
Rössler oscillators display a variety of banded chaotic attr
tors because of period-doubling cascades and period-3
dows in their vicinity. In the phase synchronized state
K50.06, the local chaotic attractors are very similar to o
another and have an internal structure similar to that o
merged two-banded attractor. Although this structure is
obvious in the left panel of Fig. 2, it can be seen clearly
the local next amplitude maps~Fig. 3! and in the density
distribution r( l ) ~inset in Fig. 3!. The intersection point of
the map with the bisectrix defines four regions in the m
such that the two bandedness of the attractor can be cha
terized by the percentagep of points in the upper left and
lower right quarter planes. Indeed, only very few points
2p53%)—typically those for smallAn,1’s which are in the
lower left quarter plane of the amplitude map—stay in t
same region of the bimodal density distribution, implyin
that the majority of the iterates map regions of high dens

FIG. 1. Standard deviationsv̄(T) of the v̄(T) distribution in
the phase synchronized state describing the speed of converg
toward v0. The datapoints forK50.2 are shifted down by one
decade for clarity. The Poincare´ surface was chosen as the surfa
spanned by the negativex1 axis and thex3 axis. The solid lines are
best fits to the respective data and decay as 1/Ta. Note thatT0

52p/v0 depends slightly onK.

FIG. 2. Left panel:x12x2 projection of the local attractor at a
single site of the lattice forK50.06 in the phase synchronized sta
All local attractors look similar to the one shown here. Right pan
A typical T052p/v0 histogramh(T0) of the nonidentical chaotic
oscillators forK50, i.e., the distribution of the natural periods. Th
exact shape of the distribution depends on thev(r ) realization.
7-2
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on the left to regions of high density on the right and vi
versa. This nearly two-banded character is also seen in
series ofTn’s ~see Fig. 4!. An alternation of long and shor
return times can be observed with rare exceptions. T
shows the close relation between topological characteris
~next amplitude map!, and temporal evolution (Tn ,Tn11
map! and suggests the following explanation for the o
served scaling:

Assuming that each internal ‘‘band’’ of the attractor
associated with a distinct mean frequencyv1 or v2 such that
v052v1v2 /(v11v2), and the system alternates betwe
bands, the ‘‘random’’ force in the evolution equation~3! for
the phase of a single oscillator takes the form

h~ t !5~21!k11
vk~v12v2!

~v11v2!
1h̃~ t !, ~7!

wherek51(2) when the system is on band 1~2!. The noise
termh̃(t) accounts for deviations of the period within a ba

FIG. 3. Superposition of eight local next amplitude maps
K50.06. The amplitudeAn,1 chosen here is the negativex1 coor-
dinate ofAn because thex3 coordinate is almost constant and ve
close to zero. The dashed lines correspond to the intersection
of the bisectrix with the map. Inset: Density distributionr( l ) along
the curve formed by the next amplitude maps.

FIG. 4. Time series ofTn for K50.06 ~left panel! and the cor-
respondingTn ,Tn11 map ~right panel!. The arrow highlights a de-
viation from the alternating behavior. These deviations occur w
12p52% at this particular site of the lattice which is the perce
age of points in the upper right and lower left quarter planes in
lower panel. Note that only a short segment of theTn series is
shown.
02621
he

is
cs

-

and deviations from the strict alternations between bands
T is the time needed forn oscillations, it follows from Eq.~4!
that

v̄~T!2v0

55 E0

T

dt
h̃~ t !

T
, n even,

~21!k11
2p~v12v2!

~v11v2!T
1E

0

T

dt
h̃~ t !

T
, n odd,

~8!

wherek51(2) corresponds to band 1~2! appearing first in
the series. The term 2p(v i2v j )/(v11v2)T scales with
1/T, while the term*0

Tdth̃(t)/T scales with 1/AT provided
that h̃(t) is d-correlated noise. Since the amplitude of t
1/AT term is very small, two scaling regimes can be iden
fied for the maximal deviation fromv0; a 1/T scaling on
intermediate time scales which is dominated by the swit
ing between the bands and a 1/AT scaling on long time
scales. The intermediate time scale scaling behavior can
deed be observed for each oscillator; the envelope ofv̄(T)
2v0 decays as 1/T. Note that the standard deviation of th
ensemble distribution ofv̄(T) decays as 1/AT for identical
chaotic Ro¨ssler oscillators andK50 — as expected from the
law of large numbers. In the case of nonidentical oscillato
phase synchronization implies that the phases are sync

nized such thatA^(v̄(T)2v0)2&, where the average is take
over the ensemble, adopts the scaling of a single oscill
reproducing the observed scaling and explaining the res
This result does not depend on the type of coupling of
oscillators as confirmed by the numerical results presen
here@15# and in Ref.@14#. This explanation is based exclu
sively on the fact that the series of the instantaneous frequ
cies alternates with the exception of rare events and that
system is phase synchronized.

The above argument easily generalizes to attractors w
multiple internal bands which we observe in the phase s
chronized state for higher coupling. Figure 5 shows that

r
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h
-
e

FIG. 5. Superposition of the next amplitude maps forK50.2 at
the same sites as in Fig. 3. Inset: Normalized point density along
curve formed by the next amplitude maps. Three regions of h
density can be identified.
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deviations from a three-banded structure are rather smal
K50.2. Three bandsA, B, andC can be identified such tha
A is mapped toB andC to A. However, bandB is mapped to
C and Z, and Z back to B such that a pure three-bande
structure does not exist. The invariant measure of the ma
areaZ is very low ~approximately 10%).

The alternation of positive and negative values forh(t)
implies that K(t8) alternates as well. Hence,Dh is very
small, i.e., a high degree of phase coherence persists.
findings suggest that this should be generally expected
oscillators where the chaotic state is reached throug
period-doubling cascade. Thus, these oscillators would
phase coherent suggesting that they can generically be p
synchronized.

The change in the structure of the local attractors as
coupling strength is changed is the analog of the bifurca
structure seen in homogeneous locally coupled Ro¨ssler oscil-
lators where one finds period doubling different from t
isolated Ro¨ssler oscillator@16#.

IV. GLOBALLY COUPLED ELECTROCHEMICAL
OSCILLATORS

We now study the convergence of the time-averaged
quency in an array of globally coupled electrochemical
cillators. A standard three electrode electrochemical cell c
sisting of a nickel working electrode array~64 1-mm
diameter electrodes in an 838 geometry with 2 mm spac
ing!, a Hg/Hg2SO4 /K2SO4 reference electrode, and a P
mesh counter electrode were used. The potentials of a
the electrodes in the array were held at the same valueV
51.310 V) with a potentiostat~EG&G Princeton Applied
Research, model 273!. Experiments were carried out in 4.
M H2SO4 solution at a temperature of 11 °C. The workin
electrodes were embedded in epoxy and reaction takes p
only at the ends. The currents of the electrodes were m
sured independently at a sampling rate of 100 Hz and t
the rate of reaction as a function of position and time w
obtained.

The electrodes were connected to the potentiostat thro
64 individual parallel resistors (Rp) and through one serie
collective resistor (Rs). We employed a method of alterin
the strength of global coupling while holding all other p
rameters constant. The total external resistance was held
stant while the fraction dedicated to individual currents,
opposed to the total current, was varied. A total resista
can be defined as

Rtot5Rs1Rp/64. ~9!

In these experimentsRtot514.2V. The series resisto
couples the electrodes globally. The parameter«, the ratio of
series to total resistance, is a measure of the global coup

«5
Rs

Rtot
. ~10!

For «50, the external resistance furnishes no additional g
bal coupling; for«51, maximal external global coupling i
achieved.
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The population of chaotic oscillators is characterized
certain amount of heterogeneity@10#. Without added cou-
pling, there is a distribution of frequencies of the oscillato
with a mean of 1.219 Hz and a standard deviation
18 mHz. With weak added global coupling («50.1), a
nearly phase synchronized state occurs in which 63 of
oscillators have a frequency of 1.230 Hz, and that of
remaining element has a frequency of 1.237 Hz. The res
are shown for this region of high phase synchrony.

Experimental Results

The chaotic attractor of a representative single elemen
the coupled system is shown in Fig. 6. The chaotic stat
adjacent to a period-three window and a period doubl
sequence. The reconstructed attractor@Fig. 6~a!# is low di-
mensional~correlation dimension 2.360.1). To obtain the
phase, the Hilbert transform approach is applied@1#. The
two-dimensional embedding using Hilbert transform
shown in Fig. 6~b!. As in the case of globally coupled
Rössler oscillators, it is difficult to distinguish the bande
character of the attractor.

The merged banded structure is more clearly seen in
turn maps obtained from the series of return timesTn . The
series of the return time clearly shows an alternation of lo
and short oscillations@Fig. 7~a!#. The map constructed usin
Tn exhibits an approximately one-dimensional~1D! charac-
ter @Fig. 7~b!#.

FIG. 6. Experiment. Chaotic dynamics of a single element
«50.1. ~a! Reconstructed attractor using time delay coordinat
~b! Two-dimensional phase space reconstruction using the Hil
transform. The solid circle represents the origin used for phase
culations.

FIG. 7. Experiment. Time series and maps of discretized cha
dynamics of a single element at«50.1. ~a! Time series of return
times Tn of the oscillations.~b! One-dimensional map using th
return time. The dashed lines correspond to the average perio
oscillations (T050.81 s) which in this case is identical to the inte
section of the map with the bisectrix.
7-4
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The oscillators in the population are slightly differen
Figure 8~a! shows a superposition of the 1D maps of all t
oscillators. Clearly, the majority of the phase points lie in t
upper left and lower right boxes indicating two-banded ch
acter. The probability of two-banded oscillations varies fro
one site to the other@Fig. 8~b!# with a mean ofpmean

50.85 and a standard deviation of 0.05. We note that
two-banded character of the uncoupled system of uncou
oscillators@«50, pmean50.7, Figs. 8~c! and 8~d!# is smaller
than that of the phase synchronized region. Therefore, du
the transition to phase synchronization with increasing
coupling strength, the two bandedness observed in the
series of oscillations is more pronounced.

As expected from the numerical simulations and theo
ical considerations, the strong correlations in the phase
namics have pronounced effects on the speed of converg
of frequencies. Figure 9 shows that the standard deviatio
frequencies is proportional to 1/T at «50.1. ~The fluctua-
tions around the fitted line are caused by slowing down
speeding up within a cycle.! Similar scaling results are ob
tained for other~larger! coupling strengths.

FIG. 8. Experiment. Characterization of the two-banded cha
ter of the population 64 oscillators. Top row:«50.1. Bottom row:
«50. ~a! Superimposed one-dimensional maps of the 64 sites.

dashed lines correspond to the average period of oscillationsT̄
50.81 s); «50.1. ~b! The distribution of probabilityp of two-
banded oscillations;«50.1. ~c! Superimposed one-dimension
maps of the 64 sites;«50. ~d! The distribution of probabilityp of
two-banded oscillations;«50.
ce
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V. CONCLUSION

For many systems of coupled oscillators, the chaotic s
is reached through a period-doubling cascade. This imp
that a Poincare´ surface exists such that the next-amplitu
map is similar to that in Fig. 3 or 5. As long as the corr
spondence between the next-amplitude map and the rela
of subsequent return times holds, this should lead to a sm
value ofDh and, in particular, to a 1/T scaling in the phase
synchronized state. The experimental results show that s
a structure of the series of return times can exists even i
well-behaved next-amplitude map can be identified. O
findings further suggest that chaotic oscillators where
chaotic state is reached through a period-doubling casc
can generally be phase synchronized due to the small v
of Dh , i.e., high degree of phase coherence. This is in acc
with findings in Ref. @1# where different chaotic system
were analyzed with respect to their ability to be phase s
chronized. There it was found that the Lorenz system~where
the chaotic attractor is not reached through a period-doub
cascade! cannot be phase synchronized. In particular,
next-amplitude map has a very different structure, i.e.
logarithmic singularity.

Finally, in many biological and physical systems, on
short time series are available. Our results show that
determination of frequencies in weakly coupled oscillato
systems may be obtainable from such short time series.
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